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Abstract

This paper considers the optimal control problem for realizing logical gates
in a closed quantum system. The quantum state is governed by Schrödinger’s
equation, which we formulate as a time-dependent Hamiltonian system in terms
of the real and imaginary parts of the state vector. The system is discretized
with the Störmer-Verlet scheme, which is a symplectic partitioned Runge-Kutta
method. Our main theoretical contribution is the derivation of a compatible
time-discretization of the adjoint state equation, such that the gradient of the
discrete objective function can be calculated exactly, at a computational cost of
solving two Schrödinger systems, independently of the number of parameters in
the control functions.

A parameterization of the control functions based on B-splines with built-
in carrier waves is also introduced. The carrier waves are used to specify the
frequency spectra of the control functions, while the B-spline functions specify
their envelope and phase. This approach allows the number of control param-
eters to be independent of, and significantly smaller than, the number of time
steps for integrating Schrödinger’s equation.

We consider Hamiltonians that model the dynamics of a superconducting
multi-level qudit and present numerical examples of how the proposed tech-
nique can be combined with the interior point L-BFGS algorithm from the
IPOPT package for realizing quantum gates. In a set of test cases, the pro-
posed algorithm is shown to compare favorably with QuTiP/pulse optim and
Grape-Tensorflow.
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1. Introduction

A key challenge for realizing the potential of quantum computing lies in
determining the most efficient and accurate route to controlling the quantum
states in a quantum device. This challenge stems from the fact that current
quantum computing systems, unlike classical computers, do not have a fixed set
of logical gates predetermined in hardware. Instead, the execution of a quantum
algorithm is carried out by first devising a set of classical control functions that
are then applied to the quantum computing hardware to guide the quantum
states through a series of quantum logical operations [16]. Reducing the time
required for a quantum gate to be realized is critical for near-term quantum
computing because it enables the computation to finish before the quantum state
collapses to a classical state, rendering the results meaningless. To mitigate this
problem, quantum optimal control techniques have been developed to produce
customized control pulses that minimize the execution time for complicated
gates that directly map onto a physical system [20].

Optimizing the control functions for realizing quantum gates is a optimal
control problem where the objective function measures the infidelity of the gate
transformation, constrained by Schrödinger’s equation governing the evolution
of the quantum states. For superconducting circuits it is also important to
suppress leakage into highly energetic states [13], leading to an optimal con-
trol problem in Mayer-Lagrange form. Our approach builds upon the works of
Hager [9], Sanz-Serna [19] and Ober-Blöbaum [18]. Hager [9] first showed how
the Hamiltonian structure in an optimization problem can be utilized to calcu-
late the gradient of the objective function. Hager considered the case in which
the state equation is discretized by one Runge-Kutta scheme, with the adjoint
state equation discretized by another Runge-Kutta scheme. It was found that
the discrete gradient can be calculated exactly if the pair of Runge-Kutta meth-
ods satisfy the requirements of a symplectic partitioned Runge-Kutta method.
Further details and generalizations are described in the review paper by Sanz-
Serna [19]. Ober-Blöbaum [18] extended Hager’s approach to the case where the
state equation itself is a Hamiltonian system that is discretized by a partitioned
Runge-Kutta scheme. For autonomous state equations, it was shown that the
compatible discretization of the adjoint state equation is another partitioned
Runge-Kutta scheme.

In the quantum optimal control problem, the Schrödinger (state) equation is
a time-dependent Hamiltonian system. To ensure long-time numerical accuracy
it is appropriate to discretize it using a symplectic time-integration method [10].
For this purpose we use the Störmer-Verlet method, which can be written as
a partitioned Runge-Kutta scheme, based on the trapezoidal and implicit mid-
point rules. Our main theoretical contribution is the generalization of Ober-
Blöbaum’s [18] work to the case of a time-dependent Hamiltonian system. We
show that the compatible method for the adjoint state equation resembles a par-
titioned Runge-Kutta scheme, except that the time-dependent matrices must be
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evaluated at modified time levels.
Logical gates in a closed quantum system can be viewed as linear reversible

mappings, |ψ′′〉 = Vg|ψ′〉, from an initial state |ψ′〉 to a final state |ψ′′〉, where
the reversibility implies that the mapping Vg must be unitary, V †g Vg = I. To
introduce the quantum control problem, we start by discussing the case where
the unitary transformation is defined in the entire N -dimensional state space,
such that it can be represented by a unitary matrix Vg ∈ CN×N ; a more general
case is described in Section 2.

In the following, we will replace the ket-notation [16] of the state vector |ψ〉 =
ψ(0)|0〉+ψ(1)|1〉+. . .+ψ(N−1)|N−1〉 by the vector notationψ = ψ(0)e0+ψ(1)e1+
. . . + ψ(N−1)eN−1, which is more common in the computational mathematics
literature1. The elements in the state vector are complex probability amplitudes
and the squared magnitude of the amplitudes sum to unity, i.e., ‖ψ‖22 = 1.

To account for all admissible initial data in the Hilbert space CN , we consider
the evolutions from the canonical basis vectors ej , for j = 0, 1, . . . , N − 1. The
time-dependent control functions are expanded in terms of a finite number of
basis functions, such that the control functions are determined by the finite-
dimensional parameter vector α ∈ RD. This leads to Schrödinger’s equation in
matrix form for the N ×N complex-valued solution operator matrix U(t,α):

dU

dt
+ iH(t,α)U = 0, 0 ≤ t ≤ T, U(0,α) = IN , H† = H. (1)

Here, IN is the N ×N identity matrix and H(t,α) is the Hamiltonian matrix,
in which the time-dependence is parameterized by α. As a result, the solu-
tion operator matrix depends implicitly on α through Schrödinger’s equation.
Due to linearity, the solution for general initial conditions satisfies ψ(t,α) =
U(t,α)ψ(0,α).

The goal of the quantum control problem is to determine the parameter
vector α such that the time-dependence in the Hamiltonian matrix leads to a
solution of Schrödinger’s equation that minimizes the difference between the
target gate matrix Vg and U(T,α). Here, we measure the difference by the
commonly used target gate infidelity [11, 13, 14, 15, 20],

J0(UT (α)) = 1− 1

N2

∣∣∣Tr
(
U†T (α)Vg

)∣∣∣2 , UT (α) := U(T,α). (2)

Because UT and Vg are unitary, |Tr(U†TVg)| ≤ N and J0 ≥ 0. Note that
the target gate infidelity is sensitive to relative phase differences between the
columns of UT and Vg, but is invariant to global phase differences between UT
and Vg.

The quantum control problem is a constrained optimization problem where,
in the basic setting, the gate infidelity (2) is minimized under the constraints
that the solution operator matrix satisfies Schrödinger’s equation (1) and the

1Here, ej represents the jth canonical basis vector, in which the jth element is one and all
other elements are zero.
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amplitudes of the control functions (determined by the parameter vector α) do
not exceed prescribed limits. For a discussion of the solvability of the quantum
control problem, see for example Borzi et al. [3].

While not a restriction of our approach, we exemplify our technique on
Hamiltonians that model the dynamics of a superconducting qudit (a qubit
with more than two energy levels). We represent the state vector in the energy
basis in which the system Hamiltonian matrix is diagonal. In the laboratory
frame of reference, the Hamiltonian matrix is modeled by

Hlab(t,α) = ωaa
†a− ξa

2
a†a†aa+ f(t,α)(a+ a†). (3)

Here, a and a† are the lowering and raising matrices (see Appendix A), ωa > 0
is the fundamental resonance frequency, ξa > 0 is the self-Kerr coefficient and
f(t,α) is a real-valued control function that depends on the parameter vector
α.

To slow down the time scales in the state vector, the problem is transformed
to a rotating frame of reference (see Appendix A) in which the Hamiltonian
matrix satisfies

H(t,α) = −ξa
2
a†a†aa+ p(t,α)(a+ a†) + iq(t,α)(a− a†), (4)

where p(t,α) and q(t,α) are the real-valued control functions in the rotating
frame of reference. The control functions in the two frames are related by

f(t) = 2p(t) cos(ωat)− 2q(t) sin(ωat). (5)

Several numerical methods for the quantum control problem are based on
the GRAPE algorithm [12]. In this case, Schrödinger’s equation is discretized in
time using the second order accurate Magnus scheme [10], in which the Hamil-
tonian matrix is evaluated at the midpoint of each time step. A stair-step
approximation of the control functions is imposed such that each control func-
tion is constant within each time step. Thus, the time step determines both
the numerical accuracy of the dynamics of the quantum state and the num-
ber of control parameters. With Q control functions, M time steps of size
h, the control functions are thus described by M times Q parameters αj,k.
The propagator in the Magnus method during the jth time step is of the form
exp(−ih(H0 +

∑
k αk,jHk)). In general, the matrices H0 and Hk do not com-

mute, leading to an integral expression for the derivative of the propagator with
respect to the parameters, which is needed for computing the gradient of the
objective function. In the original GRAPE method, this integral expression
is approximated by the first term in its Taylor series expansion, leading to an
approximate gradient that is polluted by an O(h2) error. As the gradient be-
comes smaller during the optimization, the approximation error will eventually
dominate the numerical gradient, which may hamper the convergence of the
optimization algorithm. A more accurate way of numerically evaluating the
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derivative of the time-step propagator can be obtained by retaining more terms
in the Taylor series expansion, or by using a matrix commutator expansion [5].
More recently, the GRAPE algorithm has been generalized to optimize objec-
tive functions that include a combination of the target gate infidelity, integrals
penalizing occupation of “forbidden states” (see Section 2) and terms for im-
posing smoothness and amplitude constraints on the control functions. Here,
automatic differentiation is used for computing the gradient of the objective
function [13]. However, the number of control parameters is still proportional
to the number of time steps, which may become very large when the duration
of the gate is long, or the quantum state is highly oscillatory.

As an alternative to calculating the gradient of the objective function by
solving an adjoint equation backwards in time, the gradient can be calculated
by differentiating Schrödinger’s equation with respect to each parameter in the
control function, leading to a differential equation for each component of the
gradient of the state vector. This approach, implemented in the GOAT algo-
rithm [15], allows the gradient of the objective function to be calculated exactly,
but requires (D+1) Schrödinger systems to be solved when the control functions
depend on D parameters. This makes the method computationally expensive
when the number of parameters is large.

Using the stair-stepped approximation of the control functions often leads to
a large number of control parameters, which may hamper the convergence of the
GRAPE algorithm. The total number of parameters can be reduced by instead
expanding the control functions in terms of basis functions. By using the chain
rule, the gradient from the GRAPE algorithm can then be used to calculate
the gradient with respect to the coefficients in the basis function expansion.
This approach is implemented in the GRAFS algorithm [14], where the control
functions are expanded in terms of Slepian sequences.

Gradient-free optimization methods can also be applied to quantum optimal
control problems. These methods do not rely on the gradient to be evaluated
and are therefore significantly easier to implement. However, the convergence of
these methods is usually much slower than for gradient-based techniques, unless
the number of control parameters is very small. One example of a gradient-free
methods for quantum optimal control is the CRAB algorithm [4].

Many parameterizations of quantum control functions have been proposed in
the literature, for example cubic splines [7], Gaussian pulse cascades [6], Fourier
expansions [22] and Slepian sequences [14]. This paper presents a different
approach, based on parameterizing the control functions by B-spline basis func-
tions with carrier waves, see Figure 1. Our approach relies on the observation
that transitions between the energy levels in a quantum system are triggered
by resonance, at frequencies which often can be determined by inspection of the
system Hamiltonian. The carrier waves are used to specify the frequency spec-
tra of the control functions, while the B-spline functions specify their envelope
and phase. We find that this approach allows the number of control parameters
to be independent of, and significantly smaller than, the number of time steps
for integrating Schrödinger’s equation.

The remainder of the paper is organized as follows. In Section 2, we gen-
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Figure 1: An example of three quadratic B-spline basis functions with carrier wave frequencies
(0, ξ, 2ξ).

eralize the optimization problem to the case of target gates that are defined
in a subspace of the entire state space. In Section 3, we first introduce the
real-valued formulation of Schrödinger’s equation, followed by a presentation of
the symplectic Störmer-Verlet time-stepping method, written as a partitioned
Runge-Kutta scheme. To achieve an exact gradient of the discrete objective
function, in Section 4 we derive the discrete adjoint time integration method.
This method resembles a partitioned Runge-Kutta scheme, except that the time-
dependent matrices are evaluated at modified time-levels. The solution of the
discrete adjoint equation is used to efficiently calculate all components of the
gradient of the discrete objective function. The parameterization of the control
functions using B-splines with carrier waves is presented in Section 5. Section 6
presents a numerical example of how the proposed technique can be combined
with the interior point L-BFGS algorithm [17] from the IPOPT package [21] to
realize multi-level qudit gates. Important properties of the optima are exposed
by analyzing the eigenvalues of the Hessian. The proposed algorithm has been
implemented in the JuQBox package, written in the Julia [2] programming lan-
guage. In Section 7, we compare its performance to two variants of the GRAPE
algorithm. Concluding remarks are given in Section 8.

2. Generalized gates

In quantum computing applications it is common to define gate transforma-
tions in a subspace of the entire (possibly infinite dimensional) state space, in
which the evolution of higher energy states is not relevant for the gate trans-
formation, but if left uncontrolled, may lead to leakage of probability. In the
following, let the subspace of interest contain E > 0 “essential” states and let
G = N − E ≥ 0 denote the number of “guard” states. The guard states that
correspond to the highest energy levels in the model are often called “forbidden”
states [13].

In the case of one qudit oscillator, we can always order the elements in
the state vector such that they correspond to increasing energy levels. The
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Schrödinger equation governs the evolution of all energy levels in the state vec-
tor, including the guard levels, but the unitary gate transformation is only
defined in the subspace of the essential states. This requirement leads us to
define the target gate transformation matrix according to

V =

[
Vg

0

]
∈ CN×E , Vg ∈ CE×E , V †g Vg = IE . (6)

Let the state vector ψj(t,α) ∈ CN satisfy the Schrödinger equation,

dψj
dt

+ iH(t,α)ψj = 0, 0 ≤ t ≤ T, ψj(0,α) = ej , (7)

for j = 0, 1, . . . , E−1. The solution operator matrix U(t,α) and the target gate
matrix V are rectangular with N rows and E columns,

U(t,α) = [ψ0(t,α),ψ1(t,α), . . . ,ψE−1(t,α)], V = [d0,d1, . . . ,dE−1]. (8)

The decomposition (6) implies that the last G rows of dj must be zero.
The matrix overlap function RV (UT ) in (2) generalizes in a straightforward

way to unitary gates that are defined in the subspace, resulting in the target
gate infidelity function

J1(UT (α)) = 1− 1

E2
|SV (UT (α))|2 , SV (UT (α)) =

E−1∑
j=0

〈ψj(T,α),dj〉2 , (9)

where 〈·, ·〉2 is the `2 vector scalar product. The population of the guard states
can be measured by the objective function

J2(U(·,α)) =
1

T

∫ T

0

E−1∑
j=0

〈ψj(t,α),Wψj(t,α)〉2 dt. (10)

Here, W is a diagonal N×N positive semi-definite weight matrix. The elements
in W are zero for all essential states and are positive for the guard states. The
elements of W are typically larger for higher energy levels in the model.

For the quantum control problem with guard states, we formulate the opti-
mization problem as

minα G(α) := J1(UT (α)) + J2(U(·,α)), (11)

dU

dt
+ iH(t,α)U = 0, 0 ≤ t ≤ T, U(0,α) = [e0, e1, . . . , eE−1]. (12)

αmin ≤ αq ≤ αmax, q = 1, 2, . . . , D. (13)

In the special case of zero guard states, J2(U) = 0 because W = 0. Thus, the
above formulation applies to both the cases with and without guard states, i.e.,
when G = N − E ≥ 0.
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3. Real-valued formulation

A real-valued formulation of Schrödinger’s equation (7) is given by[
u̇

v̇

]
=

[
S(t) −K(t)

K(t) S(t)

][
u

v

]
=:

[
fu(u,v, t)

fv(u,v, t)

]
,

[
u(0)

v(0)

]
=

[
gu

gv

]
, (14)

where,

u = Re(ψ), v = −Im(ψ), K = Re (H), S = Im (H),

Because the matrix H is Hermitian, KT = K and ST = −S (note that the
matrix S is unrelated to the matrix overlap function SV ). The real-valued
formulation of Schrödinger’s equation is a time-dependent Hamiltonian system
corresponding to the Hamiltonian functional,

H(u,v, t) = uTS(t)v +
1

2
uTK(t)u+

1

2
vTK(t)v. (15)

In general, S(t) 6= 0, which makes the Hamiltonian system non-separable.
In terms of the real-valued formulation, the columns of the solution operator

matrix in (8) satisfy U = [u1 − iv1, u2 − iv2, . . . ,uE − ivE ]. Here, (uj ,vj)
satisfy (14) subject to the initial conditions guj = ej and gvj = 0. The columns
in the target gate matrix V correspond to

V = [du1 − idv1, du2 − idv2, . . . ,duE − idvE ] , duj = Re(dj), dvj = −Im(dj).

Using the real-valued notation, the objective function (11) can be written

G(α) =

(
1− 1

E2
|SV (UT (α))|2

)
+

1

T

E−1∑
j=0

∫ T

0

(
〈uj(t,α),Wuj(t,α)〉2 + 〈vj(t,α),Wvj(t,α)〉2

)
dt, (16)

where,

SV (UT ) =

E−1∑
j=0

(〈
uj(T,α),duj

〉
2

+
〈
vj(T,α),dvj

〉
2

)

+ i

E−1∑
j=0

(〈
vj(T,α),duj

〉
2
−
〈
uj(T,α),dvj

〉
2

)
. (17)

3.1. Time integration

Let tn = nh, for n = 0, 1, . . . ,M , be a uniform grid in time where h = T/M
is the time step. Also let un ≈ u(tn) and vn ≈ v(tn) denote the numerical
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solution on the grid. We use a partitioned Runge-Kutta (PRK) scheme [10] to
discretize the real-valued formulation of Schrödinger’s equation,

u0 = gu, v0 = gv, (18)

un+1 = un + h

s∑
i=1

bui κ
n,i, vn+1 = vn + h

s∑
i=1

bvi `
n,i, (19)

κn,i = fu(Un,i,V n,i, tn + cui h), `n,i = fv(Un,i,V n,i, tn + cvi h), (20)

Un,i = un + h

s∑
j=1

auijκ
n,j , V n,i = vn + h

s∑
j=1

avij`
n,j . (21)

Here, s ≥ 1 is the number of stages. The stage variables Un,i and V n,i are
set in a bold font to indicate that they are unrelated to the solution operator
matrix U(t,α) and the target gate matrix V .

The Störmer-Verlet scheme is a two-stage PRK method (s = 2) that is
symplectic, time-reversible and second order accurate [10]. It combines the
trapezoidal and the implicit midpoint rules, with Butcher coefficients:

au11 = au12 = 0, au21 = au22 =
1

2
, av11 = av21 =

1

2
, av12 = av22 = 0, (22)

bu1 = bu2 =
1

2
, cu1 = 0, cu2 = 1, bv1 = bv2 =

1

2
, cv1 = cv2 =

1

2
. (23)

3.2. Time step restrictions for accuracy and stability

The accuracy in the numerical solution of Schrödinger’s equation is essen-
tially determined by how well the fastest time scale in the state vector is re-
solved on the grid in time. The analysis of the time scales in the solution of
Schrödinger’s equation is most straightforward to perform in the complex-valued
formulation (7).

There are two fundamental time scales that must be resolved in the solution
of Schrödinger’s equation. The first corresponds to how quickly the control
functions must vary in time to trigger the desired transitions between the energy
levels in the quantum system. This time scale is determined by the transition
frequencies in the system Hamiltonian, which follow as the difference between its
consecutive eigenvalues. In the Hamiltonian model (4), the angular transition
frequencies between the essential energy levels are

∆j = jξa, j = 0, . . . , E − 1. (24)

The second time scale is due to the harmonic oscillation of the phase in the
state vector. It can be estimated by freezing the time-dependent coefficients
in the Hamiltonian matrix at some time t = t∗ and considering Schrödinger’s
equation with the time-independent Hamiltonian matrix H∗ = H(t∗). The N ×
N matrix H∗ is Hermitian and can be diagonalized by a unitary transformation,

H∗X = XΓ, X†X = IN , Γ = diag(γ1, γ2, . . . , γN ),
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where the eigenvalues γk are real. By the change of variables ψ̃ = X†ψ, the
solution of the diagonalized system follows as

ψ̃k(t) = e−iγktψ̃k(0),

corresponding to the period τk = 2π/|γk|. The shortest period thus follows from
the spectral radius of H∗, ρ(H∗) = maxk |γk|.

To estimate the time step for the Störmer-Verlet method, we require that
the shortest period in the solution of Schrödinger’s equation must be resolved
by at least CP time steps. Taking both time scales into account leads to the
time step restriction

h ≤ 2π

CP max{ρ(H∗),maxj(|∆j |)}
. (25)

The value of CP that is needed to obtain a given accuracy in the numerical
solution depends on the order of accuracy, the duration of the time integration,
as well as the details of the time-stepping scheme. For second order accurate
methods such as the Störmer-Verlet method, acceptable accuracy for engineering
applications can often achieved with CP ≈ 40. With the Störmer-Verlet method,
we note that the time-stepping can become unstable if CP ≤ 2, corresponding
to a sampling rate below the Nyquist limit.

After freezing the coefficients, the Hamiltonian (4) becomes

H∗ = −ξa
2
a†a†aa+ p∗(a+ a†) + iq∗(a− a†), p∗ = p(t∗,α), q∗ = q(t∗,α).

We can estimate the spectral radius of H∗ ∈ CN×N using the Gershgorin circle
theorem [8]. Because H∗ is Hermitian, all its eigenvalues are real. As a result,
its spectral radius can be bounded by

ρ(H∗) ≤
|ξa|
2

(N − 1)(N − 2) + (|p∗|+ |q∗|)
√
N − 1.

Hence, it is the largest value of (|p∗|+ |q∗|) that determines the time step.
Given the parameter vector α, the control functions are bounded by p∞ =

maxt |p(t,α)| and q∞ = maxt |q(t,α)|, where the maximum is evaluated for
times 0 ≤ t ≤ T . Thus, using the estimate

ρ(H∗) ≤
|ξa|
2

(N − 1)(N − 2) + (p∞ + q∞)
√
N − 1, (26)

in (25) guarantees that the time-dependent phase in the state vector is resolved
by at at least CP time steps per shortest period.

If the optimization imposes amplitude constraints on the parameter vector,
|α|∞ ≤ αmax, those constraints can be used to estimate the time step before
the optimization starts. This allows the same time step to be used throughout
the iteration and eliminates the need to recalculate the spectral radius of H∗
when α changes.
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Our implementation of the Störmer-Verlet scheme was verified to be second
order accurate. It was also found to give approximately the same accuracy as
the second order Magnus integrator [10] when the same time step was used in
both methods (data not shown to conserve space).

4. Discretizing the objective function and its gradient

In this section, we develop a “discretize before optimize” approach in which
we first discretize the objective function and then derive a compatible scheme for
discretizing the adjoint state equation, which is used for computing the gradient
of the objective function. As was outlined in the introduction, our approach
builds upon the works of Hager [9], Sanz-Serna [19] and Ober-Blöbaum [18].

4.1. Discretizing the objective function

The Störmer-Verlet scheme can be written in terms of the stage variables
(Un,i,V n,i) by substituting (κn,i, `n,i) from (20) into (19),

u0 = gu, v0 = gv, (27)

un+1 = un +
h

2

(
SnU

n,1 + Sn+1U
n,2 −KnV

n,1 −Kn+1V
n,2
)
, (28)

vn+1 = vn +
h

2

(
Kn+1/2

(
Un,1 +Un,2

)
+ Sn+1/2(V n,1 + V n,2)

)
, (29)

and into (21),

Un,1 = un, (30)

Un,2 = un +
h

2

(
SnU

n,1 + Sn+1U
n,2 −KnV

n,1 −Kn+1V
n,2
)
, (31)

V n,1 = vn +
h

2

(
Kn+1/2U

n,1 + Sn+1/2V
n,1
)
, (32)

V n,2 = vn +
h

2

(
Kn+1/2U

n,1 + Sn+1/2V
n,1
)
. (33)

Here, Sn = S(tn), Sn+1/2 = S(tn + 0.5h), etc. Because S(t) 6= 0, the scheme is
block implicit. Note that un+1 = Un,2 and V n,1 = V n,2 = v(tn+1/2) +O(h2).

The numerical solution at the final time step provides a second order accurate
approximation of the continuous solution operator matrix UT , which we denote
UTh. It is used to approximate the matrix overlap function SV (UT ) in (17),

SV h(UTh) =

E−1∑
j=0

(〈
uMj ,d

u
j

〉
2

+
〈
vMj ,d

v
j

〉
2

)
+ i

E−1∑
j=0

(〈
vMj ,d

u
j

〉
2
−
〈
uMj ,d

v
j

〉
2

)
,

(34)
which is then used as the first part of the discrete objective function,

J1h(UTh) =

(
1− 1

E2
|SV h(UTh)|2

)
. (35)
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The integral in the objective function (16) can be discretized to second order
accuracy by using the Runge-Kutta stage variables,

J2h(U ,V ) =
h

T

E−1∑
j=0

M−1∑
n=0

(
1

2

〈
Un,1
j ,WUn,1

j

〉
2

+
1

2

〈
Un,2
j ,WUn,2

j

〉
2

+
〈
V n,1
j ,WV n,1

j

〉
2

)
. (36)

Based on the above formulas we discretize the objective function (16) according
to

Gh(α) = Jh(UαTh,U
α,V α), Jh(UTh,U ,V ) := J1h(UTh) + J2h(U ,V ). (37)

Here, UαTh, Uα and V α represent the time-discrete solution of the Störmer-
Verlet scheme for a given parameter vector α. We note that Gh(α) can be eval-
uated by accumulation during the time-stepping of the Störmer-Verlet scheme.

4.2. The discrete adjoint approach

The gradient of the discretized objective function can be derived from first
order optimality conditions of the corresponding discrete Lagrangian. In this
approach, let (µnj ,ν

n
j ) be the adjoint variables and let (Mn,i

j ,Nn,i
j ) be Lagrange

multipliers. We define the discrete Lagrangian by

Lh(u,v,U ,V ,µ,ν,M ,N ,α) =

Jh(UTh,U ,V )−
E−1∑
j=0

(〈
u0
j − guj ,µ0

j

〉
2

+
〈
v0j − gvj ,ν0

j

〉
2

+

6∑
k=1

T kj

)
. (38)

The first two terms in the sum enforce the initial conditions (27). The terms
T 1
j and T 2

j enforce the time-stepping update formulas (28)-(29) in the Störmer-
Verlet scheme,

T 1
j =

M−1∑
n=0

〈
un+1
j − unj −

h

2

(
SnU

n,1
j + Sn+1U

n,2
j −KnV

n,1
j −Kn+1V

n,2
j

)
,µn+1

j

〉
2

,

(39)

T 2
j =

M−1∑
n=0

〈
vn+1
j − vnj −

h

2

(
Kn+1/2

(
Un,1
j +Un,2

j

)
+ Sn+1/2(V n,1

j + V n,2
j )

)
,νn+1
j

〉
2

.

(40)

The terms T 3
j to T 6

j enforce the relations between the stage variables (30)-(33)

using the Lagrange multipliers (Mn,i
j and Nn,i

j ), see Appendix B for details.
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To derive the discrete adjoint scheme, we note that the discrete Lagrangian
(38) has a saddle point if

∂Lh
∂µnj

=
∂Lh
∂νnj

=
∂Lh
∂Nn,i

j

=
∂Lh
∂Mn,i

j

= 0, (41)

∂Lh
∂unj

=
∂Lh
∂vnj

=
∂Lh
∂Un,i

j

=
∂Lh
∂V n,i

j

= 0, (42)

for n = 0, 1, . . . ,M , i = 1, 2 and j = 0, 1, . . . , E−1. Here, the set of conditions in
(41) result in the Störmer-Verlet scheme (27)-(33) for evolving (unj ,v

n
j ,U

n,i
j ,V n,i

j )
forwards in time. The set of conditions in (42) result in a time-stepping scheme
for evolving the adjoint variables (µnj ,ν

n
j ) backwards in time, as is made precise

in the following lemma.

Lemma 1. Let Lh be the discrete Lagrangian defined by (38). Furthermore,
let (unj ,v

n
j ,U

n,i
j ,V n,i

j ) satisfy the Störmer-Verlet scheme (27)-(33) for a given
parameter vector α. Then, the set of saddle-point conditions (42) are satisfied if
the Lagrange multipliers (µnj ,ν

n
j ) are calculated according to the reversed time-

stepping scheme,

µMj =
∂Jh
∂uMj

, νMj =
∂Jh
∂vMj

, (43)

µnj = µn+1
j − h

2

(
κn,1j + κn,2j

)
, (44)

νnj = νn+1
j − h

2

(
`n,1j + `n,2j

)
, (45)

for n = M − 1,M − 2, . . . 0. Because ST = −S and KT = K, the slopes satisfy

κn,1j = SnX
n
j −Kn+1/2Y

n,1
j − 2

h

∂Jh
∂Un,1

j

, (46)

κn,2j = Sn+1X
n
j −Kn+1/2Y

n,2
j − 2

h

∂Jh
∂Un,2

j

, (47)

`n,1j = KnX
n
j + Sn+1/2Y

n,1
j − 2

h

∂Jh
∂V n,1

j

, (48)

`n,2j = Kn+1X
n
j + Sn+1/2Y

n,2
j − 2

h

∂Jh
∂V n,2

j

, (49)

where the stage variables are given by

Xn
j = µn+1

j − h

2
κn,2j , (50)

Y n,2
j = νn+1

j , (51)

Y n,1
j = νn+1

j − h

2

(
`n,1j + `n,2j

)
. (52)
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Proof. The lemma follows after a somewhat tedious but straightforward calcu-
lation shown in detail in Appendix B.

Corresponding to the continuous Schrödinger equation (14), the adjoint state
equation (without forcing) is[

µ̇

ν̇

]
=

[
S(t) −K(t)

K(t) S(t)

][
µ

ν

]
=:

[
fµ(µ,ν, t)

fν(µ,ν, t)

]
, (53)

where we used that ST = −S and KT = K.

Corollary 1. The time-stepping scheme (44)-(52) (without forcing) is a con-
sistent approximation of the continuous adjoint state equation (53). It can be
written as a modified partitioned Runge-Kutta method, where the Butcher coef-
ficients are

aµ11 = aµ21 = 1/2, aµ12 = aµ22 = 0, aν11 = aν12 = 0, aν21 = aν22 = 1/2, (54)

bµ1 = bµ2 =
1

2
, bν1 = bν2 =

1

2
, (55)

corresponding to the implicit midpoint rule for the µ-equation and the trapezoidal
rule for the ν-equation in (53). The modifications to the partitioned Runge-
Kutta scheme concerns the formulae for the slopes, (46)-(49). Because of the
time-levels at which the matrices K and S are evaluated, it is not possible to
define Butcher coefficients cµi and cνi such that

κn,ij = fµ(Xn,i
j ,Y n,i

j , tn + cµi h),

`n,ij = fν(Xn,i
j ,Y n,i

j , tn + cνi h).

Proof. See Appendix C.

Only the matricesK and S depend explicitly onα in the discrete Lagrangian.
When the saddle point conditions (41) and (42) are satisfied, we can therefore
calculate the gradient of Gh by differentiating (38),

∂Gh
∂αr

=
∂Lh
∂αr

, r = 0, 1, . . . , E − 1.

This relation leads to the following lemma.

Lemma 2. Let Lh be the discrete Lagrangian defined by (38). Assume that
(unj ,v

n
j ,U

n,i
j ,V n,i

j ) are calculated according to the Störmer-Verlet scheme for a

given parameter vector α. Furthermore, assume that (µnj ,ν
n
j ,X

n
j ,Y

n,i
j ) satisfy

the adjoint time-stepping scheme in Lemma 1, subject to the terminal conditions

µMj = − 2

E2

(
Re(SV h)duj − Im(SV h)dvj

)
, νMj = − 2

E2

(
Re(SV h)dvj + Im(SV h)duj

)
,
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and the forcing functions

∂Jh
∂Un,1

j

=
h

T
WUn,1

j ,
∂Jh
∂Un,2

j

=
h

T
WUn,2

j

∂Jh
∂V n,1

j

=
h

T
WV n,1

j ,
∂Jh
∂V n,2

j

= 0.

Then, the saddle-point conditions (41) and (42) are satisfied and the gradient
of the objective function (37) is given by

∂Gh
∂αr

=
h

2

E−1∑
j=0

M−1∑
n=0

{〈
S′nU

n,1
j + S′n+1U

n,2
j − (K ′n +K ′n+1)V n,1

j ,Xn
j

〉
2

+
〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

+
〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,1
j ,Y n,2

j

〉
2

}
,

(56)

where S′n = ∂S/∂αr(tn), K ′n+1/2 = ∂K/∂αr(tn+1/2), etc.

Proof. See Appendix D.

As a result of Lemma 2, all components of the gradient can be calculated
from (unj ,v

n
j ,U

n,i
j ,V n,1

j ) and the adjoint variables (µnj ,ν
n
j ,X

n
j ,Y

n,i
j ). The

first set of variables are obtained from time-stepping the Störmer-Verlet scheme
forward in time, while the second set of variables follow from time-stepping the
adjoint scheme backward in time.

We can avoid storing the time-history of (unj ,v
n
j ,U

n,i
j ,V n,1

j ) by using the
time-reversibility of the Störmer-Verlet scheme. However, in order to do so,
we must first calculate the terminal conditions (uMj ,v

M
j ) by evolving (27)-(33)

forwards in time. The time-stepping can then be reversed and the gradient of
the objective function (56) can be accumulated by simultaneously time-stepping
the adjoint system (44)-(52) backwards in time.

5. Quadratic B-splines with carrier waves

Let A(t) and φ(t) be real-valued amplitude and phase functions of time. By
taking the control functions in the rotating frame Hamiltonian (4) to be

p(t) = A(t) cos(φ(t)), q(t) = A(t) sin(φ(t)),

the relation (5) results in the laboratory frame control function

f(t) = 2A(t) cos(ωat+ φ(t)). (57)

We expand the amplitude function in a set of basis functions {Bk}D1

k=1 and start
by considering the case of one carrier wave. We make the ansatz,

A(t) =

D1∑
k=1

Bk(t)βk,
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where βk are real coefficients. By defining the phase as φk(t) = Ωt+ θk,

p(t) =

D1∑
k=1

Bk(t)βk cos(Ωt+ θk) =

D1∑
k=1

Bk(t)
[
α
(1)
k cos(Ωt)− α(2)

k sin(Ωt)
]
,

q(t) =

D1∑
k=1

Bk(t)βk sin(Ωt+ θk) =

D1∑
k=1

Bk(t)
[
α
(1)
k sin(Ωt) + α

(2)
k cos(Ωt)

]
.

where
α
(1)
k = βk cos(θk), α

(2)
k = βk sin(θk).

In the laboratory frame, the resulting control function becomes

f(t) = 2

D1∑
k=1

Bk(t)βk cos((ωa + Ω)t+ θk).

The case with one carrier wave is straightforward to generalize to multiple

frequencies, {Ω`}
Nf

`=1. This leads to a laboratory frame control function with a
spectrum that can be precisely specified to match the transition frequencies of
the system,

f(t) = 2

Nf∑
`=1

D1∑
k=1

Bk(t)βk,` cos((ωa + Ω`)t+ θk,`).

The total number of control parameters becomes D = 2NfD1, which equals
the size of the parameter vector α. Here, Nf is the number of frequencies and
D1 ≥ 1 is the number of basis functions per frequency.

In this paper we use the quadratic B-spline basis (see Figure 1) to represent
the amplitude and phase of the control functions. Here, each basis function is a
piecewise quadratic polynomial in time. It is the lowest order B-spline function
that has at least one continuous derivative. We define the basis functions on a
uniform grid in time,

tm = (m− 1.5)δ, m = 1, . . . , D1, δ =
T

D1 − 2
. (58)

Each basis function Bm(t) is centered around t = tm and is easily expressed in
terms of the scaled time parameter τm(t) = (t− tm)/3δ,

Bm(t) = B̃(τm(t)), B̃(τ) =


9
8 + 9

2τ + 9
2τ

2, − 1
2 ≤ τ < −

1
6 ,

3
4 − 9τ2, − 1

6 ≤ τ <
1
6 ,

9
8 −

9
2τ + 9

2τ
2, 1

6 ≤ τ <
1
2 ,

0, otherwise.

(59)

Note that Bm(t) is only non-zero in the interval t ∈ [tm−1.5δ, tm+1.5δ]. Thus,
for any fixed time t, a control function will only get contributions from at most
three B-spline basis functions. This property allows the control functions to be
evaluated very efficiently.
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Figure 2: A B-spline control function p(t,α) without carrier wave (Ω1 = 0 and Nf = 1). Here,
the black dashed line is the control function and the solid colored lines are the individual B-
spline basis functions, scaled by α1

m,1. In this case, D1 = 6.

6. Numerical optimization

Our numerical solution of the optimal control problem is based on the gen-
eral purpose interior-point optimization package IPOPT [21]. This open-source
library implements a primal-dual barrier approach for solving large-scale non-
linear programming problems, i.e., it minimizes an objective function subject to
inequality (barrier) constraints on the parameter vector. Because the Hessian of
the objective function is costly to calculate, we use the L-BFGS algorithm [17]
in IPOPT, which only relies on the objective function and its gradient to be
evaluated. Inequality constraints that limit the amplitude of the parameter
vector α are enforced internally by IPOPT.

The routines for evaluating the objective function and its gradient are im-
plemented in the Julia programming language [2], which provides a convenient
interface to IPOPT. Given a parameter vector α, the routine for evaluating
the objective function solves the Schrödinger equation with the Störmer-Verlet
scheme and evaluates Gh(α) by accumulation. The routine for evaluating the
gradient first applies the Störmer-Verlet scheme to calculate terminal condi-
tions for the state variables. It then proceeds by accumulating the gradient
∇αGh by simultaneous reversed time-stepping of the discrete adjoint scheme
and the Störmer-Verlet scheme. These two fundamental routines, together with
functions for setting up the Hamiltonians, estimating the time step, setting up
constraints on the parameter vector, post-processing and plotting of the results
have been implemented in the software package JuQBox, which was used to
generate the numerical results below.

The adjoint gradient implementation has been verified against a centered
finite difference approximation of the discrete objective function by perturbing
each component of the parameter vector. To further verify our implementation,
we also calculated the discrete gradient by differentiating the Störmer-Verlet
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scheme with respect to each component of the parameter vector. This gradient
agreed with the adjoint gradient to within 11-12 digits. (Data not shown to
conserve space.)

6.1. A CNOT gate on a single qudit with guard levels

To test our methods on a quantum optimal control problem, we consider
realizing a CNOT gate on a single qudit with four essential energy levels and
two guard levels. The qudit is modeled in the rotating frame of reference using
the Hamiltonian (4) with fundamental frequency ωa/2π = 4.10336 GHz and self-
Kerr coefficient ξa/2π = 0.2198 GHz. We parameterize the two control functions
using B-splines with carrier waves and choose the frequencies to be Ω1 = 0,
Ω2 = −ξa and Ω3 = −2ξa. In the rotating frame, these frequencies correspond
to transitions between the ground state and the first exited state, the first and
second excited states and the second and third excited states. We discourage
population of the fourth and fifth excited states using the weight matrix W =
diag[0, 0, 0, 0, 0.1, 1.0] in J2h, see (10). We use D1 = 10 basis functions per
frequency and control function, resulting in a total of D = 60 parameters. The
amplitudes of the control functions are limited by the constraint

‖α‖∞ := max
1≤r≤D

|αr| ≤ αmax. (60)

We set the gate duration to T = 100 ns and estimate the time step using the
technique in Section 3.2. To guarantee at least CP = 40 time steps per period,
we use M = 8, 796 time steps, corresponding to h ≈ 1.136 · 10−2 ns.

As initial guess for the elements of the parameter vector, we use a random
number generator with a uniform distribution in [−0.01, 0.01]. In Figure 3 we
present the convergence history with the two parameter thresholds αmax/2π = 4
MHz and 3 MHz, respectively. We show the objective function G, decomposed
into J1h and J2h, together with the norm of the dual infeasibility, ‖∇αG−z‖∞,
that IPOPT uses to monitor convergence, see [21] for details. For the case with
αmax/2π = 3 MHz, IPOPT converges well and needs 126 iteration to reduce
the dual infeasibility to 10−5, which was used as convergence criteria. However,
when the parameter constraint is relaxed to αmax/2π = 4 MHz, the convergence
of IPOPT stalls after about 100 iterations and is terminated after 200 iterations.

For the converged solution with parameter constraint αmax/2π = 3 MHz, the
two parts of the objective function are J1h ≈ 1.47 · 10−4 and J2h ≈ 4.72 · 10−5,
corresponding to a trace fidelity greater than 0.9998. The population of the
guard states remains small for all times and initial conditions. In particular,
the “forbidden” state |5〉 has a population that remains below 4.04 · 10−7, see
Figure 4. The optimized control functions are shown in Figure 5 and the popu-
lation of the essential states, corresponding to the four initial conditions of the
CNOT gate, are presented in Figure 6.

Even though the dual infidelity does not reach the convergence criteria with
the parameter threshold αmax/2π = 4 MHz, the resulting control functions give
a very small objective function. Here, J1h ≈ 8.56 · 10−5 and J2h ≈ 4.15 · 10−5,
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Figure 3: Convergence of the IPOPT iteration for the CNOT gate with the parameter con-
straint ‖α‖∞ ≤ αmax. Here, αmax/2π = 4 MHz (left) and αmax/2π = 3 MHz (right).

Figure 4: The population of the “forbidden” state |5〉 as function of time for the four initial
conditions of the CNOT gate. Here, αmax/2π = 3 MHz.

Figure 5: The rotating frame control functions p(t) (blue) and q(t) (orange) for realizing a
CNOT gate with D1 = 10 basis function per carrier wave and three carrier wave frequencies.
Here, αmax/2π = 3 MHz.
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Figure 6: The population of the states |0〉 (blue), |1〉 (orange), |2〉 (green) and |3〉 (purple),
as function of time, for each initial condition of the CNOT gate. Here, αmax/2π = 3 MHz.

corresponding to a trace fidelity greater than 0.9999. The population of the
“forbidden” state |5〉 has a population that remains below 3.39 · 10−7.

6.2. The Hessian of the objective function

The numerical results shown in Figure 3 illustrate that the convergence prop-
erties of the optimization algorithm depend on the parameter constraints. To
gain clarity into the local landscape of the optima we study the Hessian of
the objective function. Let the optima correspond to the parameter vector α∗.
Based on the adjoint scheme for calculating the gradient, we can approximate
the elements of the Hessian matrix using a centered finite difference approxima-
tion,

∂2Gh(α∗)

∂αj∂αk
≈ 1

2ε

(
∂Gh
∂αj

(α∗ + εek)− ∂Gh
∂αj

(α∗ − εek)

)
:= Lj,k, (61)

for j, k = 1, 2, . . . , D. To perform this calculation, the gradient must be evalu-
ated for the 2D parameter vectors (α∗ ± εek). Because the objective function
and the parameter vector are real-valued, the gradient and the Hessian are also
real-valued. Due to the finite difference approximation, the matrix L is only ap-
proximately equal to the Hessian. The accuracy in L is estimated in Table 1 by
studying the norm of its asymmetric part, which is zero for the Hessian. Based
on this experiment we infer that ε = 10−6 is appropriate to use for approximat-
ing the Hessian in (61). To eliminate spurious effects from the asymmetry in
the L matrix, we study the spectrum of its symmetric part, Ls = 0.5(L+ LT ).
Because it is real and symmetric, it has a complete set of eigenvectors and all
eigenvalues are real.
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ε ‖0.5(L+ LT )‖F ‖0.5(L− LT )‖F
10−4 4.95 · 103 1.99 · 10−4

10−5 4.95 · 103 2.01 · 10−6

10−6 4.95 · 103 1.46 · 10−6

10−7 4.95 · 103 1.47 · 10−5

Table 1: The Frobenius norm of the symmetric and asymmetric parts of the approximate
Hessian, L, for the case αmax/2π = 3.0 MHz.

Figure 7: The eigenvalues of the symmetric part of the approximate Hessian, 0.5(L + LT ),
evaluated at the optima for the parameter thresholds αmax/2π = 4 MHz (blue triangles) and
αmax/2π = 3 MHz (orange circles). The positive eigenvalues are shown on a log-scale on the
left and the small eigenvalues are shown on a linear scale on the right.

The eigenvalues of the Hessian are shown in Figure 7 for both values of
the parameter threshold, αmax. Two properties of the spectra are noteworthy.
First, a few eigenvalues are negative. This may be an artifact related to the
elements of the parameter vector that are close to their bounds. As a result
the landscape of the objective function may not be accurately represented by
the corresponding components of the Hessian. The second interesting property
is that the 15 largest eigenvalues are significantly larger than the rest. This
indicates that the control functions are essentially described by the 15 eigenvec-
tors associated with those eigenvalues. As a result, the objective function varies
much faster in those directions than in the directions of the remaining 45 eigen-
vectors and this may hamper the convergence of the optimization algorithm in
that subspace. However, most of those 45 eigenvalues become larger when the
parameter threshold is reduced from αmax/2π = 4 MHz to αmax/2π = 3 MHz.
This indicates that the constraints on the parameter vector have a regulariz-
ing effect on the optimization problem and may explain why the latter case
converges better (see Figure 3).

7. Comparing JuQBox with QuTiP/pulse optim and Grape-TF

The QuTiP/pulse optim package is part of the QuTiP [11] framework and
implements the GRAPE algorithm in the Python language. The Grape-TF code
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(TF is short for Tensorflow [1]) is also implemented in Python and provides an
enhanced implementation of the GRAPE algorithm, as described by Leung et
al. [13]. It is callable from QuTiP and shares a similar problem setup with the
pulse optim function.

To compare the JuQBox code with pulse optim and Grape-TF, we consider
a set of SWAP gates. These gates transform the ground state |0〉 to excited
state |d〉, and vice versa. The transformation can be described by the unitary
matrix

Vg =



0 0 · · · 0 1

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

1 0 · · · 0 0


∈ C(d+1)×(d+1), (62)

which involves E = d+ 1 essential states. To evaluate how much leakage occurs
to higher energy levels, we add one guard (forbidden) level (G = 1) and evolve a
total of N = d+2 states in Schrödinger’s equation. As before, the guard level is
left unspecified in the target gate transformation. We consider implementing the
SWAP gates on a multi-level qudit that can be described by the fundamental
frequency ωa/2π = 4.8 GHz and the self-Kerr coefficient ξa/2π = 0.22 GHz.
We apply the rotating wave approximation, where the angular frequency of the
rotation is ωa, resulting in the Hamiltonian model (4). As a realistic model
for current superconducting quantum devices, we impose the control amplitude
restrictions

maxt|p(t,α)| ≤ c∞, maxt|q(t,α)| ≤ c∞,
c∞
2π

= 9 MHz, (63)

in the rotating frame of reference.

7.1. Setup of simulation codes

QuTiP/pulse optim can minimize the target gate fidelity, G1, but does not
suppress occupation of higher energy states. Thus, it does not minimize terms
of the type G2. As a proxy for G2, we append one additional energy level to the
simulation and measure its occupation as an estimate of leakage to higher energy
states. In pulse optim, the control functions are discretized on the same grid in
time as Schrödinger’s equation and no smoothness conditions are imposed. In
our tests, we use a random initial guess for the parameter vector.

Grape-TF discretizes the control functions on the same grid in time as
Schrödinger’s equation. It minimizes an objective function that consists of a
number of user-configurable parts. In our test, we minimize the gate infidelity
(G1) and the occupation of one guard (forbidden) energy level (similar to G2).
To smooth the control functions in time, the objective function also contains ad-
ditional terms to minimize their first and second time derivatives. The various
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parts of the objective function are weighted together by user-specified coeffi-
cients. The gradient of the objective function is calculated using the automatic
differentiation (AD) technique, as implemented in the Tensorflow package. In
our tests, we use a random initial guess for the control vector.

In JuQBox, we trigger the first d transition frequencies in the Hamiltonian
by using d carrier waves in the control functions, with angular frequencies

Ωk = (k − 1)(−ξa), k = 1, 2, . . . , Nf , Nf = d.

Similar to pulse optim and Grape-TF, a pseudo-random number generator is
used to construct the initial guess for the parameter vector.

The pulse optim and JuQBox simulations were run on a Macbook Pro with a
2.6 GHz Intel iCore-7 processor. To utilize the GPU acceleration in Tensorflow,
the Grape-TF simulations were run on one node of the Pascal machine at Liv-
ermore Computing, where each node has an Intel XEON E5-2695 v4 processor
with two NVIDIA P-100 GPUs.

7.2. Numerical results

A SWAP gate where the control functions meet the control amplitude bounds
(63) can only be realized if the gate duration is sufficiently long. Furthermore,
the minimum gate duration increases with d. For each value of d, we used
numerical experiments to determine a duration Td such that at least two of
the three simulation codes could find a solution with a small gate infidelity.
For JuQBox, we used the technique in Section 3.2 with CP = 80 to obtain
the number of time steps. The number of control parameters follow from D =
2NfD1, where Nf = d equals the number of carrier wave frequencies and D1 is
the number of B-splines per control functions. Here, D1 = 10 for d = 3, 4, 5 and
D1 = 20 for d = 6. For pulse optim and Grape-TF, we calculate the number of
time steps based on the shortest transition period, corresponding to the highest
transition frequency in the system. We then use 40 time steps per shortest
transition period to resolve the control functions. For both GRAPE methods
there are 2 control parameters per time step. The main simulation parameters
are given in Table 2.

Optimization results for the pulse optim, Grape-TF and JuQBox codes are
presented in Tables 3, 4 and 5. The pulse optim code generates piecewise con-
stant control functions that are very noisy and may therefore be hard to realize
experimentally. To obtain a realistic estimate of the resulting dynamics, we
interpolate the optimized control functions on a grid with 20 times smaller time
step and use the mesolve() function in QuTiP to calculate the evolution of the
system from each initial state. We then evaluate the gate infidelity using the
evolved states at the final time, denoted by G∗1 in Table 3. Since the control
functions from Grape-TF and JuQBox are significantly smoother, we report the
target gate fidelities as calculated by those codes.

For the |0〉 ↔ |3〉, |0〉 ↔ |4〉 and |0〉 ↔ |5〉 SWAP gates, all three codes
produce control functions with very small gate infidelities. We note that the
population of the guard level, |ψ(d+1)|2, is about an order of magnitude larger
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# time steps # parameters

d Td [ns] JuQBox GRAPE JuQBox GRAPE

3 140 14,787 4,480 60 8,960

4 215 37,843 7,568 80 15,136

5 265 69,962 11,661 100 23,322

6 425 157,082 22,441 240 44,882

Table 2: Gate duration, number of time steps (M) and total number of control parameters (D)
in the |0〉 ↔ |d〉 SWAP gate simulations. The number of time steps and control parameters
are the same for pulse optim and Grape-TF.

d G∗1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU [s]

3 4.35e-6 9.41e-3 9.00 9.00 38 30

4 3.91e-5 1.20e-2 9.00 9.00 93 108

5 1.57e-4 8.77e-3 9.00 9.00 215 385

6 1.76e-3 4.48e-2 9.00 9.00 246 894

Table 3: QuTiP/pulse optim results for |0〉 ↔ |d〉 SWAP gates. Note the larger infidelity and
guard state population for d = 6.

d G1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU [s]

3 8.76e-6 4.03e-3 6.98 8.83 78 2,062

4 1.52e-5 3.39e-3 6.87 6.54 128 10,601

5 2.80e-5 1.78e-3 7.21 7.62 161 28,366

6 4.89e-1 2.33e-5 0.73 0.74 93 81,765

Table 4: Grape-TF results for |0〉 ↔ |d〉 SWAP gates. Note the very large infidelity for d = 6.
These simulations used two NVIDIA P-100 GPUs to accelerate Tensorflow.

d G1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU

3 2.71e-5 1.92e-3 7.59 8.99 177 55

4 4.91e-5 1.23e-3 7.78 5.33 166 151

5 4.95e-5 1.25e-3 7.42 7.24 173 291

6 7.41e-6 4.41e-3 4.55 5.39 229 1255

Table 5: JuQBox results for |0〉 ↔ |d〉 SWAP gates.
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with pulse optim than with JuQBox; the guard level population from Grape-TF
are somewhere in between. The most significant difference between the results
occur for the d = 6 SWAP gate. Here, the Grape-TF code fails to produce
a small gate infidelity after running for almost 23 hours and the pulse optim
code results in a gate fidelity that is about 2 orders of magnitude larger than
JuQBox.

While pulse optim and JuQBox require comparable amounts of CPU time to
converge, the Grape-TF code is between 50-100 times slower, despite the GPU
acceleration.

We proceed by analyzing the optimized control functions and take the |0〉 ↔
|5〉 SWAP gate as a representative example. In this case, the relevant transition
frequencies in the laboratory frame of reference are

fk =
1

2π
(ωa − kξa) , k = 0, 1, 2, 3, 4. (64)

To compare the optimized control functions, we evaluate the corresponding
laboratory frame control function using (5) and study its Fourier spectrum.
Results from the pulse optim, Grape-TF and JuQBox simulations are presented
in Figure 8. We first note that pulse optim produces a significantly noisier
control function compared to the other two codes. The control function from
Grape-TF is significantly smoother, even though its spectrum includes some
noticeable peaks at frequencies that do not correspond to transition frequencies
in the system. The JuQBox simulation results in a laboratory frame control
function where each peak in the spectrum corresponds to a transition frequency
in the Hamiltonian.

8. Conclusions

In this paper we have developed numerical methods for optimizing control
functions for realizing logical gates in a closed quantum system. The quantum
state is governed by Schrödinger’s equation, which is a time-dependent Hamil-
tonian system. To ensure long-time numerical accuracy we discretize it using
the symplectic Störmer-Verlet method, which can be written as a partitioned
Runge-Kutta scheme. Our main theoretical contribution is the derivation of a
compatible time-discretization of the adjoint state equation, such that the gra-
dient of the discrete objective function can be calculated exactly. This scheme
generalizes Ober-Blöbaum’s [18] methods to the case of a time-dependent Hamil-
tonian system.

We have also introduced a parameterization of the control functions based
on B-splines with built-in carrier waves. The carrier waves are used to spec-
ify the frequency spectra of the control functions, while the B-spline functions
specify their envelope and phase. This approach allows the number of control
parameters to be independent of, and significantly smaller than, the number
of time steps for integrating Schrödinger’s equation. Our numerical solution of
the optimal control problem is based on the general purpose interior-point opti-
mization package IPOPT [21], which implements a primal-dual barrier approach
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(a) QuTiP/pulse optim.

(b) Grape-TF.

(c) JuQBox.

Figure 8: Magnitude of the Fourier spectrum of the laboratory frame control function for the
|0〉 ↔ |5〉 SWAP gate.
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for minimizing the objective function subject to amplitude constraints on the
parameter vector. We optimized the control functions for a CNOT gate with
two guard states, resulting in a gate trace fidelity greater than 0.9999. Having a
moderate number of control parameters enabled us to study the spectrum of the
Hessian of the objective function at an optima. We found that imposing tighter
bounds on the parameter vector results in a Hessian with larger eigenvalues and
thus improves the convergence of the optimization algorithm.

The performance of the proposed algorithm, implemented in a code called
JuQBox, was compared with two implementations of the GRAPE algorithm:
QuTiP/pulse optim [11] and Grape-Tensorflow [13]. JuQBox was found to pro-
duce significantly smoother control functions than QuTiP/pulse optim, while
using about the same computational resources. JuQBox was also found to run
about 50-100 times faster than Grape-Tensorflow.

In future work, it would be interesting to study if the convergence proper-
ties of the optimization algorithm can be improved by modifying the objective
function. We also intend to generalize our approach to solve optimal control
problem for open quantum systems.
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Appendix A. The Hamiltonian in a rotating frame of reference

In the laboratory frame of reference, the Hamiltonian matrix for a single
superconducting qudit can be modeled by

H(t) = ωaa
†a− ξa

2
a†a†aa+ f(t)(a+ a†). (A.1)

Here, ωa > 0 and ξa are given real constants and f(t,α) is a real-valued function
of time that depend on the parameter vector α. Furthermore, a is the lowering
matrix,

a =



0 1

0
√

2

. . .
. . .

0
√
N − 1

0


,
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and the raising matrix a† is its adjoint (conjugate transpose).
To derive the rotating frame transformation, we consider the time-dependent

change of variable
ψ(t) = R†(t)ψ̃(t), R†R = I.

We have

ψ̇ = Ṙ†ψ̃ +R†
˙̃
ψ, Hψ = HR†ψ̃.

After some algebra, the Schrödinger equation (7) and the identity RṘ† = −ṘR†
gives:

˙̃
ψ = −iH̃(t)ψ̃, H̃(t) = R(t)H(t)R(t)† + iṘ(t)R(t)†. (A.2)

The rotating frame of reference is introduced by taking the unitary transforma-
tion to be

R(t) = exp(iωat a
†a), a†a =



0

1

2

. . .

N − 1


, ṘR† = iωaa

†a.

(A.3)
From (A.2) and (A.3), the first term in the Hamiltonian (A.1) is canceled by
the term iṘ(t)R(t)†. Furthermore, a†a†aa = (a†a)2 − a†a and both a†a and
(a†a)2 commute with R(t). After noting that Ra†R† = eiωata†, the transformed
Hamiltonian can be written

H̃(t) = −ξa
2

(
(a†a)2 − a†a

)
+ f(t)

(
e−iωata+ eiωata†

)
. (A.4)

To slow down the time scales in the control function, we want to absorb the
highly oscillatory factors exp(±iωat) into f(t). Because the control function
f(t) is real-valued, this can only be done in an approximate fashion. We make
the ansatz,

f(t) = 2p(t) cos(ωat)− 2q(t) sin(ωat) =

(p+ iq) exp(iωat) + (p− iq) exp(−iωat), (A.5)

where p(t) and q(t) are real-valued functions. After some algebra, the trans-
formed Hamiltonian (A.4) becomes

H̃(t) = −ξa
2

(
(a†a)2 − a†a

)
+ p

(
a+ a†

)
+ iq

(
a− a†

)
+ (p− iq) exp(−2iωat)a+ (p+ iq) exp(2iωat)a

†.

The rotating frame approximation follows by ignoring the terms that oscillate
with twice the frequency, exp(±2iωat), resulting in the transformed Schrödinger
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system,

˙̃
ψj = −i

(
Hd + H̃c(t)

)
ψ̃j , ψ̃j(0) = ej , (A.6)

Hd = −ξa
2

(
a†a†aa

)
, H̃c(t) = p(t)

(
a+ a†

)
+ iq(t)

(
a− a†

)
. (A.7)

Here, Hd is called the drift Hamiltonian. When ξa � ωa, the state vector varies
on a significantly slower time scale in the rotating frame than in the laboratory
frame.

In the remainder of the paper, the Schrödinger equation is always solved
under the rotating frame approximation and we drop the tildes on the state
vector and the Hamiltonian matrices.

Appendix B. Derivation of the discrete adjoint scheme

We seek to determine a scheme for evolving the Lagrange multiplier (adjoint)
variables to satisfy the first order optimality conditions (42). In the following,
let δr,s denote the usual Kronecker delta function.

The terms T 3
j to T 6

j in (38) enforce the relations between the stage variables
(30)-(33) according to

T 3
j =

M−1∑
n=0

〈
Un,1
j − unj ,M

n,1
j

〉
2
, (B.1)

T 4
j =

M−1∑
n=0

〈
Un,2
j − unj −

h

2

(
SnU

n,1
j + Sn+1U

n,2
j −KnV

n,1
j −Kn+1V

n,2
j

)
,Mn,2

j

〉
2

,

(B.2)

T 5
j =

M−1∑
n=0

〈
V n,1
j − vnj −

h

2

(
Kn+1/2U

n,1
j + Sn+1/2V

n,1
j

)
,Nn,1

j

〉
2

, (B.3)

T 6
j =

M−1∑
n=0

〈
V n,2
j − vnj −

h

2

(
Kn+1/2U

n,1
j + Sn+1/2V

n,1
j

)
,Nn,2

j

〉
2

. (B.4)

Taking the derivative of (38) with respect to urj

0 =
∂Lh
∂urj

=
∂Jh
∂urj

−
[
(µnj − µn+1

j )δr,n + µMj δr,M − (Mn,1
j +Mn,2

j )δr,n

]
,

which gives the conditions

µMj =
∂Jh
∂uMj

, µnj − µn+1
j = Mn,1

j +Mn,2
j , n = 0, 1, . . . ,M − 1.

Similarly, differentiating (38) with respect to vrj gives

0 =
∂Lh
∂vrj

=
∂Jh
∂vrj

−
[
(νnj − νn+1

j )δr,n + νMj δr,M − (Nn,1
j +Nn,2

j )δr,n

]
,
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which leads to the conditions

νnj − νn+1
j = Nn,1

j +Nn,2
j , νMj =

∂Jh
∂vMj

.

Next we take the derivative of (38) with respect to Un,1
j ,

∂Lh
∂Un,1

j

=
∂Jh
∂Un,1

j

−
6∑
i=1

∂T ij

∂Un,1
j

= 0,

∂T 1
j

∂Un,1
j

= −h
2
STnµ

n+1
j ,

∂T 2
j

∂Un,1
j

= −h
2
KT
n+1/2ν

n+1
j ,

∂T 3
j

∂Un,1
j

= Mn,1
j ,

∂T 4
j

∂Un,1
j

= −h
2
STnM

n,2
j ,

∂T 5
j

∂Un,1
j

= −h
2
KT
n+1/2N

n,1
j ,

∂T 6
j

∂Un,1
j

= −h
2
KT
n+1/2N

n,2
j ,

which, using the fact that STn = −Sn and KT
n = Kn, we may write as

Mn,1
j +

h

2
Sn

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
=

∂Jh
∂Un,1

j

.

Repeating this procedure for the derivative with respect to Un,2
j gives

∂Lh
∂Un,2

j

=
∂Jh
∂Un,2

j

−
6∑
i=1

∂T ij

∂Un,2
j

= 0,

∂T 1
j

∂Un,2
j

= −h
2
STn+1µ

n+1
j ,

∂T 2
j

∂Un,2
j

= −h
2
KT
n+1/2ν

n+1
j ,

∂T 4
j

∂Un,2
j

= Mn,2
j − h

2
STn+1M

n,2
j ,

∂T 3
j

∂Un,2
j

=
∂T 5

j

∂Un,2
j

=
∂T 6

j

∂Un,2
j

= 0,
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which we may write compactly as

Mn,2
j +

h

2
Sn+1

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2ν

n+1
j =

∂Jh
∂Un,2

j

.

Taking the derivative of (38) with respect to V n,1
j gives the set of equations

∂Lh
∂V n,1

j

=
∂Jh
∂V n,1

j

−
6∑
i=1

∂T ij

∂V n,1
j

= 0,

∂T 1
j

∂V n,1
j

=
h

2
KT
nµ

n+1
j ,

∂T 2
j

∂V n,1
j

= −h
2
STn+1/2ν

n+1
j ,

∂T 3
j

∂V n,1
j

= 0,

∂T 4
j

∂V n,1
j

=
h

2
KT
nM

n,2
j ,

∂T 5
j

∂V n,1
j

= Nn,1
j − h

2
STn+1/2N

n,1
j ,

∂T 6
j

∂V n,1
j

= −h
2
STn+1/2N

n,2
j ,

which gives the condition

Nn,1
j +

h

2
Sn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
+
h

2
Kn

(
µn+1
j +Mn,2

j

)
=

∂Jh
∂V n,1

j

.
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Similarly, taking the derivative with respect to V n,2
j gives

∂Lh
∂V n,2

j

=
∂Jh
∂V n,2

j

−
6∑
i=1

∂T ij

∂V n,2
j

= 0,

∂T 1
j

∂V n,2
j

=
h

2
KT
n+1µ

n+1
j ,

∂T 2
j

∂V n,2
j

= −h
2
STn+1/2ν

n+1
j ,

∂T 4
j

∂V n,2
j

=
h

2
KT
n+1M

n,2
j ,

∂T 6
j

∂V n,2
j

= Nn,2
j ,

∂T 3
j

∂V n,2
j

=
∂T 5

j

∂V n,2
j

= 0,

giving

Nn,2
j +

h

2
Sn+1/2ν

n+1
j +

h

2
Kn+1

(
µn+1
j +Mn,2

j

)
=

∂Jh
∂V n,2

j

.

In summary, the first order optimality conditions (42) are satisfied if the follow-
ing equations hold:

µnj − µn+1
j = Mn,1

j +Mn,2
j , µMj =

∂Jh
∂uMj

, (B.5)

νnj − νn+1
j = Nn,1

j +Nn,2
j , νMj =

∂Jh
∂vMj

, (B.6)

Mn,1
j +

h

2
Sn

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
=

∂Jh
∂Un,1

j

,

(B.7)

Mn,2
j +

h

2
Sn+1

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2ν

n+1
j =

∂Jh
∂Un,2

j

, (B.8)

Nn,1
j +

h

2
Sn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
+
h

2
Kn

(
µn+1
j +Mn,2

j

)
=

∂Jh
∂V n,1

j

,

(B.9)

Nn,2
j +

h

2
Sn+1/2ν

n+1
j +

h

2
Kn+1

(
µn+1
j +Mn,2

j

)
=

∂Jh
∂V n,2

j

. (B.10)
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We now consider the following change of variables

Xn
j = µn+1

j +Mn,2
j , (B.11)

Y n,1
j = νn+1

j +Nn,1
j +Nn,2

j , (B.12)

Y n,2
j = νn+1

j , (B.13)

which, upon substitution into (B.7)-(B.10), gives the set of equations

Mn,1
j +

h

2
SnX

n
j −

h

2
Kn+1/2Y

n,1
j =

∂Jh
∂Un,1

j

, (B.14)

Mn,2
j +

h

2
Sn+1X

n
j −

h

2
Kn+1/2Y

n,2
j =

∂Jh
∂Un,2

j

, (B.15)

Nn,1
j +

h

2
Sn+1/2Y

n,1
j +

h

2
KnX

n
j =

∂Jh
∂V n,1

j

, (B.16)

Nn,2
j +

h

2
Sn+1/2Y

n,2
j +

h

2
Kn+1X

n
j =

∂Jh
∂V n,2

j

. (B.17)

By adding (B.14)-(B.15),

Mn,1
j +Mn,2

j = −h
2

[
(Sn + Sn+1)Xn

j −Kn+1/2

(
Y n,1
j + Y n,2

j

)]
+

∂Jh
∂Un,1

j

+
∂Jh
∂Un,2

j

.

(B.18)

Similarly, by adding (B.16)-(B.17),

Nn,1
j +Nn,2

j = −h
2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂Jh
∂V n,1

j

+
∂Jh
∂V n,2

j

.

(B.19)

Thus, (B.5)-(B.6) can be rewritten as

µnj − µn+1
j = −h

2

[
(Sn + Sn+1)Xn

j −Kn+1/2

(
Y n,1
j + Y n,2

j

)]
+

∂Jh
∂Un,1

j

+
∂Jh
∂Un,2

j

(B.20)

νnj − νn+1
j = −h

2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂Jh
∂V n,1

j

+
∂Jh
∂V n,2

j

(B.21)

By combining Xn
j = µn+1

j +Mn,2
j and (B.15),

Xn
j = µn+1

j − h

2
Sn+1X

n
j +

h

2
Kn+1/2Y

n,2
j +

∂Jh
∂Un,2

j

. (B.22)
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Similarly, by combining Y n,1
j = νn+1

j +Nn,1
j +Nn,2

j and (B.19),

Y n,1
j = νn+1

j − h

2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂Jh
∂V n,1

j

+
∂Jh
∂V n,2

j

.

(B.23)

The time-stepping scheme is completed by the relation

Y n,2 = νn+1
j . (B.24)

The scheme (B.20)-(B.24) may be written in the form of Lemma 1 by defining
the slopes according to (46)-(49). This completes the proof of the lemma.

Appendix C. Proof of Corollary 1

By rearranging (44) and (45),

µn+1
j = µnj +

h

2

(
κn,1j + κn,2j

)
, (C.1)

νn+1
j = νnj +

h

2

(
`n,1j + `n,2j

)
. (C.2)

Hence, bµ1 = bµ2 = 1/2 and bν1 = bν2 = 1/2.
To express the stage variables in standard form we substitute (C.1) into (50)

and define Xn,1
j = Xn,2

j = Xn
j . Similarly, we substitute (C.2) into (51) and

(52), resulting in

Xn,1
j = µnj +

h

2
κn,1j ,

Xn,2
j = µnj +

h

2
κn,1j ,

Y n,1
j = νnj ,

Y n,2
j = νnj +

h

2

(
`n,1j + `n,2j

)
.

From these relations we can identify aµ11 = aµ21 = 1/2 and aµ12 = aµ22 = 0.
Furthermore, aν11 = aν12 = 0 and aν21 = aν22 = 1/2.

For the case without forcing, the formulae for the slopes, (50)-(52), become

κn,1j = SnX
n,1
j −Kn+1/2Y

n,1
j , (C.3)

κn,2j = Sn+1X
n,2
j −Kn+1/2Y

n,2
j , (C.4)

`n,1j = KnX
n,1
j + Sn+1/2Y

n,1
j , (C.5)

`n,2j = Kn+1X
n,2
j + Sn+1/2Y

n,2
j . (C.6)

They are consistent approximations of the time derivatives µ̇(tn) and ν̇(tn), re-
spectively. The scheme is therefore a consistent approximation of the continuous
adjoint system.
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Appendix D. Computing the gradient of the discrete objective func-
tion

Given a solution that satisfies the saddle point conditions of (41) and (42),
the gradient of Lh(α) satisfies

dLh
dαr

=
∂J1h
∂αr

(u,v) +
∂J2h
∂αr

(U ,V ), r = 1, 2, . . . , D.

The gradient of Lh with respect to α only gets a contribution from the terms
in T qj that involve the matrices K and S. Let S′n = ∂S/∂αr(tn) and K ′n =
∂K/∂αr(tn). We have,

∂T 1
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,µn+1

j

〉
2
,

∂T 2
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2

(
Un,1
j +Un,2

j

)
+ S′n+1/2

(
V n,1
j + V n,2

j

)
,νn+1
j

〉
2
,

∂T 3
j

∂αr
= 0,

∂T 4
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Mn,2

j

〉
2
,

∂T 5
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,1

j

〉
2
,

∂T 6
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,2

j

〉
2
.

We note that

∂(T 5
j + T 6

j )

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,1

j +Nn,2
j

〉
2
.

Let Xn
j and Y n,i

j be defined by (B.11)-(B.13). We have,

∂T 4
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Xn

j − µn+1
j

〉
2
,

∂(T 5
j + T 6

j )

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j − νn+1
j

〉
2
.

Thus,

∂(T 1
j + T 4

j )

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Xn

j

〉
2
.
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Furthermore, from the relation (B.13),

∂(T 2
j + T 5

j + T 6
j )

∂αr
=− h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

− h

2

M−1∑
n=0

〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,2
j ,Y n,2

j

〉
2
,

We can further simplify the expressions by recognizing that V n,1 = V n,2. By
collecting the terms,

∂Lh
∂αr

=
h

2

E−1∑
j=0

M−1∑
n=0

(〈
S′nU

n,1
j + S′n+1U

n,2
j − (K ′n +K ′n+1)V n,1

j ,Xn
j

〉
2

+
〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

+
〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,1
j ,Y n,2

j

〉
2

)
.

This completes the proof of the lemma.
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